
in slag entrainment, as shown in Fig. 1(b). Most of the entrained 
slag becomes entrapped into the solidifying steel shell to form 
defects. Calculated interface instability reveals level variations 
greater than ~20 mm, especially at the meniscus region around 
its perimeter (Fig. 1(c)). These severe level instabilities can cause 
the liquid mold flux to touch the solidifying steel shell, and to 
be captured into the steel shell via meniscus hooks. However, 
the jet flow from the downward-angled nozzle ports with well-
optimized casting conditions makes a classic double-roll pattern 
with less jet wobbling, resulting in better stability of the surface 
level and velocity in the mold. Velocity variations are smaller and 
the interface shows only ~2 mm fluctuations, so slag entrapment 
defects are drastically reduced. 

Argon bubble motion is affected by turbulent jet flow in the 
mold, as shown in Fig. 2(a). Most bubbles larger than 3-mm 
in diameter float up toward the top surface due to their large 
buoyancy. On the other hand, small bubbles move along with 
the jet flow and easily reach the narrow face to be carried deep 
into the mold cavity. Many of the small bubbles move between 
the dendrites to be captured into the steel, especially without 
EMBr. However, EMBr slows and deflects the jet flow [6–7], so 
more bubbles float upward near the nozzle and fewer bubbles 
are transported to the narrow face and deep into the mold. As 
shown in Fig. 2(b), the bubble capture rate increases with time 
(until ~15-18 sec after gas injection for EMBr off and ~15 sec for 
EMBr on, because the jet flow path is shorter with EMBr). Then, 
after the flow has stabilized at nominally steady casting, EMBr is 
observed to reduce bubble entrapment significantly. 

Parametric studies with these multiphase LES models have 
enabled better understanding of the complex multiphysics 
phenomena related to defect formation, including slag entrainment, 
inclusion and bubble transport, and capture. This has led to 
suggestions of nozzle geometry/casting condition combinations 
that lead to fewer defects, and, consequently, to significant savings 
to the steel plants. 

WHY BLUE WATERS
Blue Waters enabled high-resolution multiphase flow simulations 

of the continuous caster needed for accurate predictions. In 
particular, the transient transport of small volume secondary-
phases (entrained liquid mold slag and argon bubbles) in the 
turbulent flow require very small cells (~1 mm3) in a huge domain, 
and simulations of over 50-seconds flow time (with 0.001-second 
time steps). Furthermore, Blue Waters resources (both ANSYS 
Fluent HPC on XE nodes and our in-house multi-GPU code 
CUFLOW on XK nodes) showed speed-up breakthroughs (e.g., 
over 3000x with ANSYS Fluent HPC on BW) needed to provide 
this modeling capability for the steel continuous casting process. 
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EXECUTIVE SUMMARY 
The objective of this project is to develop computational models 

to simulate transient multiphase flows and related phenomena, 
to apply them to gain an improved fundamental understanding 
of defect formation in continuous steel casting, and to find ways 
to further improve the process. Large-Eddy Simulations (LES) 
coupled with a Volume of Fluid (VOF) model were applied to track 
transient motion of the liquid mold flux/molten steel interface 
and slag entrainment into the molten steel pool during steady 
state continuous casting. In addition, the transport of argon 
bubbles in the molten steel and their capture into the solidifying 
steel shell were simulated using LES simulations coupled with 
a Lagrangian Discrete Phase Model for particle transport and 
particle capture criteria. Furthermore, the LES models were 
validated with facility measurements and applied to investigate 
optimal process conditions for the nozzle port angle, submergence 
depth of the nozzle, and Electro-Magnetic Braking (EMBr) field 
strength. These simulations on Blue Waters reveal deeper insights 
into defect formation during the continuous casting of steel and 
have enabled improved operation. 

RESEARCH CHALLENGE
Continuous casting is the most widely employed solidification-

process for steel manufacturing in the world [1], so even small 
improvements in this important process can lead to large benefits. 
Most defects in final products are related to transient multiphase 
flow phenomena in the mold region of the process (Fig. 1(a)). 
Severe instability at the liquid mold flux/molten steel interface 
can entrain some of the liquid mold flux (added on top of the 
molten steel pool in the mold to prevent steel oxidation) into 
the molten steel [2]. In addition, argon gas bubbles, injected to 
prevent nozzle clogging [3], can be trapped by the solidifying steel 
shell in the mold. To reduce these problems, transient multiphase 
flow phenomena should be understood, and process conditions 
should be optimized to reduce defect formation during continuous 
casting. 

In this year’s project, LES of several different important aspects 
of multiphase flow were performed to quantify the transient 
liquid mold flux/molten steel interface, transport of argon gas 
bubbles, and bubble capture into the steel shell in the mold during 
nominally steady continuous casting of steel slabs for different 
process conditions. The modeling results have been validated 
with plant measurements and applied to find optimal process 
conditions, including nozzle port angle, nozzle submergence depth, 
and EMBr field strength. 

METHODS & CODES
LES coupled with VOF were applied to model transient molten 

steel flow and to track the liquid mold flux/molten steel interface. 
These models were implemented into the commercial package 
ANSYS Fluent on Blue Waters (BW) XE nodes. To calculate bubble 
transport and capture into solidifying steel shells with and without 
EMBr, LES coupled with Lagrangian particle capture (based on a 
force balance on each particle at the solidification front) [5] and 
MagnetoHydroDynamics models [8] using the GPU-based in-
house code CUFLOW were employed on BW XK nodes.

RESULTS & IMPACT
Turbulent swirl flow from the upward-angled nozzle ports 

produces jet wobbling in the mold [4]. Sometimes, the jet 
impinges onto the liquid mold flux/molten steel interface and 
drags some of the liquid mold flux into the steel pool, resulting 

MP

Figure 1: (a) Schematic of multiphase flow phenomena in the steel continuous-
casting mold and Effect of nozzle port angle on (b) mold flow patterns, including 
motion of the top liquid mold flux layer, and (c) level variations at the liquid mold 
flux/molten steel interface in the meniscus region.

Figure 2: Effect of EMBr on (a) instantaneous argon bubble distributions and (b) 
bubble capture rate in the mold.
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